
Applied Math 
 

 

Collection of Scientific Papers of Applied Math and Computer Technologies Faculty  
of Khmelnytskyy National University / 2010, N. 1 (3) 

1 

УДК 539.2 
Г. Я. СТОПЕНЬ 

Хмельницький національний університет 
 

ЗАДАЧА МОДЕЛЮВАННЯ ДИНАМІЧНИХ ТЕРМОПРУЖНИХ ПОЛІВ ДЛЯ 
ІЗОТРОПНОЇ КУСКОВО-ОДНОРІДНОЇ ОБМЕЖЕНОЇ ПЛАСТИНИ 

 
Методом скінченного інтегрального перетворення Фур'є на ( )1+n -шаровому сегменті побудовано в 

замкнутій формі розв'язок динамічної задачі термопружності для ( )1+n -складової тонкої обмеженої 
ізотропної пластини. 

By means of the finite integral Fourier transformation for ( )1+n -segment of sphere there has been built a 

solution in a closed form of the dynamic problem of thermoelasticity for ( )1+n -component thin bordered isotropic 
plate. 

Ключові слова: інтегральне перетворення Фур'є, динамічна задача термопружності. 
 
Задача про структуру динамічного термопружного поля в ізотропній ( )1+n -складовій тонкій 

обмеженій пластині математично приводить до побудови обмеженого в області 
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розв'язку сепаратної системи рівнянь руху 
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за початковими умовами 
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крайовими умовами 
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та умовами ідеального механічного контакту 
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У формулах (2) – (4) μ j  – коефіцієнт Пуассона, αtj

 – температурний коефіцієнт лінійного розширення 

ізотропного тіла, ( )
1

1 21 21
−

−⎡ ⎤= ρ −μ⎢ ⎥⎣ ⎦j j j j
c E  – швидкість поширення поздовжньої хвилі у плоскому напруженому 

стані, jE  – модуль Юнга, ρ j  – густина матеріалу; 
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Зауважимо, що: 1) для задачі в переміщеннях 0 1 10

11 22 2211
0, 1, 0, 1;+ +α = β = α = β =n n  2) для задачі в 

напруженнях (край пластини вільний від зовнішнього навантаження) 
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Розв'язок задачі (1) – (4) також побудований методом скінченного інтегрального перетворення Фур'є на 

сегменті [ ]0 ,l l  з n  точками спряження [3]. 
Визначимо величини і функції 
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Тут iλ  – утворюючі дискретний спектр корені трансцендентного рівняння 
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Компоненти власної функції 
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обчислюються за формулами 
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Вагова функція 
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квадрат норми власної функції 
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Скінченні пряме niF  та обернене 
1−

niF  інтегральні перетворення Фур'є діють за правилами 
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Напишемо систему (1) і початкові умови (2) в матричній формі 
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Якщо інтегральний оператор niF  зобразити у вигляді матриці-рядка 
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і застосувати до задачі (14), (15) за правилом множення матриць, то 
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У рівностях (17), (18) прийняті позначення: 
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Безпосередньо перевіряється, що розв'язком задачі Коші (17), (18) є функція 
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Визначимо функції Коші 
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породжені неоднорідністю системи (1) (початковим напруженим станом пластини), і функції Гріна 
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породжені дією зусиль на краях 0=x l  та .=x l  

Застосувавши до матриці-елемента ( ) ,⎡ ⎤⎣ ⎦iU t  де функція ( )iU t  визначена формулою (19), за правилом 
множення прямокутних матриць операторну матрицю-стовпець 
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в результаті елементарних перетворень одержуємо розв’язок задачі (2) – (4): 
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Функція 
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де ( ),mU t x  визначені формулою (24), описує динамічне поле переміщень в даній пластині. Поле динамічних 
напружень опишуть функції 
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Зауважимо, що побудований розв'язок динамічної задачі утримує в собі як розв'язок термопружної 

задачі, так і розв'язок пружної задачі і в напруженнях, і в переміщеннях. 
Надаючи , ,

jt j jc pα  різних значень, можемо змоделювати будь-яку із задач динамічних термопружних 

полів. 
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